2D – 2.5D Manufacturing
Milling

- High tolerance
- Moderate throughput
- Significant tooling costs / wear of tools
Milling
Water Jet Cutting

- Water + garnet abrasively cuts material with 60 ksi pressures
- Cold cutting of thick materials—no heat affected zone (HAZ) or discoloration
- No tooling costs
- Multi-axis control permits cut axes from normal
Water Jet Cutting

Cutting time: 1,000 rpm
Cake

Steel

5 Axis Control
Electrical Discharge Machining (EDM)

- Preferred for hard-to-machine materials
- Arcing between a (Cu alloy) wire and the workpiece ablates material in the presence of a dielectric
- Can achieve small features with high tolerances
- Parallel kerf walls
Electrical Discharge Machining (EDM)

Wire EDM
Electrical Discharge Machining (EDM)

Die Sinking EDM
Laser Cutting

- Can be used in low to high volume applications
- No tooling costs
- Reduced part stresses and minimal to moderate heating
Laser Cutting
Laser Cutting

TruLaser Cell 8030: High productive laser cutting
Plasma Cutting

- Inert gas blown from nozzle excited to plasma state via applied bias
- Cutting is achieved via melting – thus a HAZ is expected
- Rough finish unless optimized or thin
Plasma Cutting
Stamping / Die Cutting

- High throughput, parallel process
- High tooling costs and tool wear
- Higher quality edge finish (may) require secondary finishing to remove burrs / roughness
Stamping / Die Cutting
<table>
<thead>
<tr>
<th>Method</th>
<th>Materials</th>
<th>Kerf (in. x 0.001)</th>
<th>Tolerance (in. x 0.001)</th>
<th>Throughput</th>
<th>Direction of forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC Milling</td>
<td>Most materials</td>
<td>Tool diameter</td>
<td>1</td>
<td>Moderate</td>
<td>XYZ</td>
</tr>
<tr>
<td>Stamping</td>
<td>Thin metals and plastics</td>
<td>n/a</td>
<td>10</td>
<td>High</td>
<td>Z</td>
</tr>
<tr>
<td>EDM</td>
<td>Conductive materials</td>
<td>4 - 14</td>
<td>0.2</td>
<td>Low</td>
<td>Minimal</td>
</tr>
<tr>
<td>Laser</td>
<td>Plastics, woods, metals (non flammable)</td>
<td>6</td>
<td>2</td>
<td>Moderate</td>
<td>Minimal</td>
</tr>
<tr>
<td>Water Jet</td>
<td>Most materials</td>
<td>20</td>
<td>1 - 8</td>
<td>Moderate</td>
<td>Z</td>
</tr>
</tbody>
</table>
2.5D to 3D

2.5 D

Computerized control over x/y axes

3D

Multi-axis programming
2.5D – 3D Manufacturing and Computer Numerical Control
CNC Machining

Benefits:
• Automated
• Complex shapes
• Repeatable

Drawbacks:
• Expensive
• Setup time
• Limited availability
CNC at UPenn

Machining Center

ProtoTRAK (retrofit mill)
ProtoTRAK

Utility
- 3 axis digital readout
- Jog
- Power feed
- Cut arbitrary features in the x/y plane
Conversational Programming

You have experienced dxf conversion / importing into the ProtoTRAK software

• Simple geometries can also be programmed conversationally on the controller

• The basic procedure is:
 1) Enter header info
 2) Program “events”
 3) Execute
Conversational Programming

Mill: Straight line profiles (with connective radii)

Arc: Specify beginning, end, and center of arc

Pocket: Interior circular, rectangular, or irregular pocket

Profile: Exterior circular, rectangular, or irregular profile
Milling Side

Left

Right
ProtoTRAK Tips / Warnings

Always check Z!!

- Not doing so can cause flying metal, tool damage, machine damage, human damage
- Check Z whenever you start a milling event or move to a new milling event

Perform a test pass offset in Z from your part
- Do not perform a “trial run” as this can damage the machine

Oversize your tool (in the tool table) to allow for a finish pass
Milling the Mounting Block
Milling the Piston Flange

Note: For aid in CNC Programming

Note: Dimensions to theoretical sharp corner

(Ø .755) Note: Satisfy .005 clearance for P/N 201-24, Piston Cylinder

<table>
<thead>
<tr>
<th>UNLESS OTHERWISE SPECIFIED:</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMENSIONS ARE IN INCHES</td>
<td>CX</td>
<td>1/30/10</td>
</tr>
<tr>
<td>TOLERANCES:</td>
<td>GJ</td>
<td>6/1/11</td>
</tr>
<tr>
<td>FRACTIONAL ± .001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGULAR MACHING ± 2°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWO PLACE DECIMAL ± .01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREE PLACE DECIMAL ± .003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOUR PLACE DECIMAL ± .0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERPRETED GEOMETRIC</td>
<td>JF</td>
<td>8/7/11</td>
</tr>
<tr>
<td>TOLERANCING PER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIAL:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C360 Brass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINISH:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF THE UNIVERSITY OF PENNYSYLVANIA. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF THE UNIVERSITY OF PENNYSYLVANIA IS PROHIBITED.

NEXT ASSEMBLY:

APPLICATION: DO NOT SCALE DRAWING

A 201-02 B

SHEET 1 OF 1