
MEAM 520
More Robot Dynamics

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP)

MEAM Department, SEAS, University of Pennsylvania

Lecture 21: December 4, 2012

replay loops final

Very nice, but not perfect!

Add gravity compensation!

Move the robot slowly through a trajectory
and record the torque needed to hold up

the weight of the robot.

x0

y0
z0

l1

l2

l3

cal3newnew

cal3newnew

What causes
these squiggles?

What is going on?

Motor Cogging
5Human Hand Trembling

3

Jacobian Noise
1

Encoder Quantization
2

Inertia
1

Erroneous Gravity Compensation
1

Uneven Construction of θ3 desired
5

Uneven Recording of θ3 desired
1

PD Controller
3

Uneven Timing
1

Squiggle Guesses

Motor Cogging
5Human Hand Trembling

3

Jacobian Noise
1

Encoder Quantization
2

Inertia
1

Erroneous Gravity Compensation
1

Uneven Construction of θ3 desired
5

Uneven Recording of θ3 desired
1

PD Controller
3

Uneven Timing
1

Squiggle Guesses

About 0.03 seconds apart... Why?

Updating the graphics takes time,
delaying the start of the next servo loop.

Pre-calculated Trajectory for Theta 3 Desired

Actual Output of Theta 3 Desired

How can we stabilize the timing?

Don’t display graphics!
Even better would be to measure time and calculate desired position accordingly...

cal3newnewb

cal3newnewb

cal3newnew

cal3newnewbslow

cal3newnewbslow

cal3newnewb

cal3newnewb slow

cal3newnewb slow refit

Questions ?

What about joint 2?

What form do you expect the gravity compensation
for joint 2 to take?

x0

y0
z0

l1

l2

l3

Questions ?

What would happen if I re-do the joint 3 movement
tests with gravity calibration on?

cal3newnewb slow refit

This fit wasn’t perfect...

cal3newnewb with updated gravity compensation

cal3newnewb slow refit with offsets

Should we compensate for friction?

Questions ?

Homework 6: Teleoperation

MEAM 520, University of Pennsylvania
Katherine J. Kuchenbecker, Ph.D.

December 3, 2012

This assignment is due on Friday, December 7, by 5:00 p.m. If you don’t finish by that time, you
may turn it in with no penalty by 5:00 p.m. on Wednesday, December 12. After that deadline, no further
assignments may be submitted. Because it is short, this assignment is worth 30 points (half the value of
homework assignments 1 through 5).

You may talk with other students about this assignment, ask the teaching team questions, use a calculator
and other tools, and consult outside sources such as the Internet. To help you actually learn the material,
what you submit should be your own work, not copied from a peer or a solution manual.

Teleoperation Controller (30 points)

Your task is to write a good controller for a simple simulated teleoperation system. The image below shows
a snapshot of the simulated teleoperator. It includes a one-degree-of-freedom master robot (left, in magenta)
and an identical one-degree-of-freedom slave robot (right, in blue). Each device consists of a single revolute
joint, much like the pair of Immersion Impulse Engine 2000 joysticks that Professor Kuchenbecker discussed
in Lecture 18 (on November 20). Each robot’s joint angle is measured in radians, with counterclockwise
positive and straight up equal to zero.

The stationary bracket to which the robots are attached is shown in dark gray. The robots can move
freely through this region because they are not in the same plane. There are no obstacles in the master’s
workspace, and the robots are too short to touch each other directly. There is one obstacle in the slave’s
workspace; shown in green, it begins at obstacleAngle and extends infinitely in the negative direction. You
should move the obstacle around to test different environments; the controller that you write should work
for any obstacle location, so it should not use the variable obstacleAngle in any way.

To simulate the presence of a human user holding onto the end of the master robot, the master moves
through a pre-determined trajectory that you select. Six trajectories are provided (masterMovement1.mat
. . . masterMovement6.mat), and you can also write your own. The slave has pre-programmed dynamics
that are hidden from your view inside the function getSlaveTheta.p. These dynamics include but are not

1

limited to inertia, gravity, friction, actuator saturation, and encoder quantization. When you first run the
starter code, you will see that the slave just falls into the obstacle and stays there, while the master robot
follows the default pre-determined trajectory. To help you understand what is happening in the simulation,
the starter code animates the entire interaction and graphs the resulting angles and commanded torques
over time, as shown in the sample graph below.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2

Time (s)

An
gl

e
(ra

d)

Master
Slave
Obstacle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

Time (s)

Co
m

m
an

de
d

To
rq

ue
 (N

m
)

Master
Slave

The simulated teleoperation system runs a servo loop at 1000 Hz, which you should not change. At
each time step, it obtains the new position of the master (masterTheta) and the slave (slaveTheta) in
radians. Your job is to specify the torque to command to the master (masterTau) and the slave (slaveTau)
in newton·meters to yield good transparency (good tracking and good feel in free space, good feel in contact
with the obstacle) and good stability (no extraneous ongoing oscillations). There should be no motion scaling
or clutching between the two devices. The slave torque that you specify will directly affect the movement
of the slave robot, while the master torque that you specify will merely be graphed. Following standard
robotics convention, a positive torque moves the joint in the positive direction. It is expected that your
controller will include gravity compensation, a proportional term, and a derivative term on both devices.

Download the starter code from this assignment’s page on the class wiki, change the name of the provided
script (teleoperation starter.m) to include your PennKey, put your name where it says ‘PUT YOUR NAME
HERE’, and make sure the starter code works correctly before starting to modify it. Near the top, you can
change the movement of the master, the initial position of the slave, the angle of the obstacle, and the
speed of the animation. When you’re ready, put your controller code between the two lines of stars, modify
whatever other simulation settings you want to elucidate the behavior of the system, and comment the final
code you write. Follow the instructions below to submit your Matlab files.

Submitting Your Code

Follow these instructions to submit your code:

1. Start an email to meam520@seas.upenn.edu

2. Make the subject Homework 6: Your Name, replacing Your Name with your name.

3. Attach your correctly named MATLAB script (teleoperation yourpennkey.m) to the email, along
with any other files that you created. You do not need to submit the provided masterMovement.mat
or getSlaveTheta.p files. Please do not zip your files together before attaching them; just attach
them as individual files.

4. Optionally include any comments you have about this assignment.

5. Send the email.

You are welcome to resubmit your code if you want to make corrections. To avoid confusion, please state
in the new email that it is a resubmission, and include all of your MATLAB files, even if you have updated
only some of them.

2

Due by 5:00 p.m. on Wednesday 12/12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

1

0

1

2

Time (s)

An
gl

e
(ra

d)

Master
Slave
Obstacle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

0.5

0

0.5

1

Time (s)

Co
m

m
an

de
d

To
rq

ue
 (N

m
)

Master
Slave

Questions ?

θ

x

y

Next time:
Kinematics of Mobile Robots

Overview of Final Exam

